
© February 2017 J.A. Kok 1 Smart Button Project

Smart Button Project

A project to add more

functionality to a button

Auteur: J.A. Kok
Copyright: J.A. Kok (2017)
Website: www.hzns.nl

© February 2017 J.A. Kok 2 Smart Button Project

content
Introcution ... 4

The Theory ... 4

Analysis .. 4

Coordinate system .. 4

Where is the mouse .. 4

Introduction ... 4

Explanation .. 5

Zones ... 6

Introduction ... 6

Grid layout ... 6

Circular layout ... 7

Segment layout.. 7

Conbinations.. 7

Hints for the implementation .. 7

The practice with Visual Baisc.NET (version 2015 Express) .. 8

Coordinates ... 8

Mouse positon ... 9

Mouse position relative to the screen .. 9

Form position relative to the screen ... 9

Size of the forms framework ... 9

Position of the Button related to the workspace of the form .. 10

The end result .. 10

Raster zones .. 11

Simpel raster ... 11

Sloped lines or mathematical formulas as boundary .. 11

Creating circular zones .. 11

Creating segment zones .. 12

Using sine and cosine .. 12

Using degrees .. 13

Considerations when using sine, cosine and degrees ... 15

Polar coordinate .. 15

Examples.. 16

Part 1: Structures for module-level variables and variables ... 16

Part 2: Functions .. 16

Part 3: Activities when loading the form ... 16

© February 2017 J.A. Kok 3 Smart Button Project

Part 4: Example Smartbutton01 .. 16

Part 5: Example Smartbutton02 .. 17

Part 6: Example Smartbutton03 .. 17

Experiences ... 17

Annex 1: VB Code of SBPmain. .. 18

© February 2017 J.A. Kok 4 Smart Button Project

Introcution
Building an application I encountered a lack of space for buttons to manage the applications

functionality. This was the trigger to a new project the "Smart Button Project" (SBP). In this project,

the surface of a button is divided into zones. Each of these zones can be associated with

functionality.

This document is divided into theoretical and a practical part. In the first part is a mathematical view

on the idea of the "smart button". This information is in principle development environment

independent. The second part is a practical implementation in a Visual Studio Basic.Net environment

(Visual Basic.Net 2015 Express version). In annex 1 to this document you will find the integral VB.Net

source code.

This document is not a cookbook (follow the recipe and you always fix it), but more an idea book

with hints and maybe some tricks.

The Theory

Analysis
A closer look shows that there are two aspects to be worked out, namely “how I divide the surface of

the button in zones” and “how do I know in which zone is clicked”. The coordinate system, which is

used for locations on the screen, is the instrument for both creating zones and establishing place of

the "mouse click".

Coordinate system
Each development environment uses a coordinate system for describing graphical elements on a

screen (screen), in which the origin usually in the left top corner is located with a positive X axis from

left to right and positive Y axis from top to bottom. Angles are defined in degrees, with zero degrees

is straight up and the count clockwise. Tis is different from the Cartesian coordinate system (see also

“Considerations when working with sine, cosine and degrees”), that we are used to from the

mathematics.

Usually a point in the system is marked with an X- and a Y-coordinate. However, it is also possible to

identify a point by the direction and the distance to another (reference) point. In such a case we call

it a polar coordinate.

Graphical elements often use their own "internal" coordinate system, usually with its origin in the

upper left corner of the element. Please note that is not always the case. When working with

containers (such as a form in Microsoft Visual Studio) you must take the size of the boarders and title

bar in account.

when working with containers (such as a form)

Where is the mouse

Introduction
The key question in this section is: "where the surface of the button is clicked with the mouse?"

Although it seems simple to state where the mouse was at the moment of the “click”, turns out to be

a road with pitfalls. The first concerns the fact that mouse position is always compared to the upper-

left corner (coordinate (0,0)) of the screen. The second is the fact that each graphic element on our

screen has its own internal coordinate system. The third concerns the fact that some graphic

© February 2017 J.A. Kok 5 Smart Button Project

elements are a "container" for other graphic elements, where the coordinate (0,0) of the "container"

coordinate system not always exactly in the upper-left corner. And a form is such a "container".

Explanation
For the explanation we use the following diagram. It consists of a screen (light blue), a form (blue

(framework bar), gray (framework border), white (workspace)), a button (yellow) and a axes cross

(place where with the mouse is clicked). The requested coordinate is the (X, Y) of the mouse click

compared to the origin of the button.

For the X (MouseOnButtonX) we can draw up the following equation:

 X = a-b-c-d.

The value a corresponds to the x of the mouse click compared to the origin of the screen

(MouseOnScreenX), b correspond to x of the form compared to the origin of the screen (FormX), c

matches with the width of the border of the form (FrameworkBORDER) and d matches with the x

compared to the origin of the workspace (ButtonX). The values of MouseOnScreenX, FormX, and

ButtonX are on-demand variables. FrameworkBORDER isn’t always available and must be calculated. The

calculation follows further on in this document. The work out if the formula:

 MouseOnButtonX = MouseOnScreenX - FormX - FrameworkBORDER- ButtonX

For the Y (MouseOnButtonY) we can draw up a similar equation:

 Y = p - q - r - s - t.

The value p corresponds to the y of the mouse click compared to origin of the screen

(MouseOnScreenY), of the form q match y compared to the origin of the screen (FormY), r

corresponds to the height of the title bar of the form (FrameworkBAR), s corresponds to the width of

the border of the form (FrameworkBORDER) and t corresponds to y of the workspace of the form

compared to the button (ButtonY). The values of MouseOnScreenY, FormY, and ButtonY are once again

demand variables. FrameworkBAR and FrameworkBORDER aren’t always available and must be

calculated. The calculation further on in this document. The work out if the formula:

 MouseOnButtonY = MouseOnScreenY - FormY - FrameworkBAR - FrameworkBORDER- ButtonY.

c

b

d
X

q

r
s

t

Y

p

a

© February 2017 J.A. Kok 6 Smart Button Project

The width of the border (FrameworkBORDER) can be calculated from the width of the form (FormWIDTH)

and the width of the work space of the form (FormINNERWIDTH). These two latter variables are usually

callable.

 FrameworkBORDER = ½ * (FormWIDTH - FormINNERWIDTH)

The height of the bar (FrameworkBAR) can be calculated in a similar way, although you to take the

value of the FrameworkBORDER into account.

 FrameworkBAR = FrameworkHEIGHT - FormINNERHEIGHT - 2 * FormBORDER

In these calculations is assumed that the borders around the form have the same width. Also, there is

no account taken of other properties)like the edges) of a form.

Zones

Introduction
The possibilities to organize into zones is infinite, as long as the boundaries between the zones can

described mathematically. In practice, a grid, a circular and/or a segment (cake point) format are

good workable options.

Grid layout
Horizontal and/or vertical boundaries. This is the simplest

layout. The mathematical description of the boundaries

are horizontal (Y has a fixed value) and vertical lines (X has

a fixed value).

In the example to the right is the conditions for a mouse

click in the middle box: V1 <= Xmouse <= V2 and H1 <= Ymouse

<= H2

Sloped or curved borders. For a grid layout with

sloped and/or curved boundaries first the

mathematical formula of this boundary must be

established. As an example: for diagonal from top

left to bottom right is the formula Y = H(eight) /

(W(idth) * X). This formula can be reformulated to 0

= (H/B) * X-Y. The right part of this formula we can

use as a kind of test. For a random point (for

example the location of the mouse click), we can substitute all the values. This T(est) value can have

three states: positive, 0 or negative. T > 0 means the random point lies above the boundary, T = 0 the

random point lies at the boundary and T < 0 the random point lies below the boundary.

For the mathematical purists: the width of the surface should never have the value 0 (since it is in the

denominator). In practice, however, this will not be a problem, a button has always a width. The

method also works for curved borders, however the finding the right mathematical formula is more

difficult.

Finally: Test your formula in advance. Check in which area your T(est) value has which value (+ , 0 , -

). This conceptual phase is the best moment to customize the logic for your implementation.

Width

Height

V1 V2

H1

H2

2

© February 2017 J.A. Kok 7 Smart Button Project

Circular layout
A circular format is a zoning based on the distance of

the mouse click and a chosen reference point,

whether or not located within the surface. In the

example to the right the reference point is the center

of the surface (XRefPoint = ½ * Width, YRefPoint = ½ *

Height).

The distance between the reference point and the

mouse click can easily be calculated by using the

Pythagorean theorem: D(istance) = ((XMouse – XRefPoint)2 + (YMouse – YRefPoint) 2)½. The condition for the

area between the circles C1 and C2 is: Distance C1 < Distance Mouse < Distance C2. The method

described above is also usable for an elliptical zone ring, but is mathematically more challenging!

Segment layout
A segment layout is a zoning based on angle

Between the mouse click and a reference point. In

the example to the right the reference point is the

center of the surface (XRefPoint = ½ * Width, YRefPoint = ½

* Height). The boundaries of the segments are

formed by the diagonals of the surface. By

comparing the angle of the mouse click to the center

and the angles of these boundaries you can

determine in which segment was clicked with the mouse.

The condition for the right segment is: AngleTopRight < AngleMouse < Angle BottomRight.

Corners can not only defined in degrees but also with their sine and cosine (easier to calculate). To

do this, first calculate the sine and cosine the upper left corner as reference values. Based on these

values the conditions for the segments are:

 Top segment: SineMouse < SineTopLeft

 Right segment: CosineMouse < - CosineTopLeft

 Bottom segment: SineMouse > - SineTopLeft

 Left segment: CosineMouse > CosineTopLeft

Conbinations
It is also possible to make combinations of zone layouts.

An example on the right. In such case a smart order of the

conditions is important to avoid double hits. In the

example First test for circle zone using the distance and

second the segment zones.

Hints for the implementation
The boundaries. It is good to think in advance about what to do with the points on a Boundary

between zones, to include these points to which zone. Suppose you have a button with a width of

200 pixels and you have the button divided equally into a left and a right zone. The boundary will be

on 100 pixels. You choose to include the boundary in left zone. The X-coordinate of the most left

width

C2

C1 Height

Height

Width

© February 2017 J.A. Kok 8 Smart Button Project

pixel will be 0 and the most right 100. If we start to count the number of actual pixels the left zone is

101 pixels width. For the right zone only 99 pixels remains and so we have an uneven distribution.

The better solution is to include the boundary in the right one. This results in two equal width zones.

The conditions for these “better” case are:

 Left zone : XMouse < XBoundary

 Right zone : XMouse > = XBoundary

The cause of this "phenomenon" is that counting pixels starts with 0, both with the X (horizontal) and

Y (vertical). As a rule include the boundary to the right and/or bottom zone.

Create your own functions. When working with segments and circles it can be useful to work with

own built functions. You do the thinking once and using it many times. I myself use the following

function:

 Input: XPoint, YPoint, XRefPoint, YRefPoint

 Output: Angle(Point, RefPoint), Distance(Point, RefPoint), Cosinus(Point, RefPoint), Sinus(Point, RefPoint)

Mathematicians among you will notice a wink to the vector geometry. A practical implementation for

VB.Net can be found in the practical part of this document.

The practice with Visual Baisc.NET (version 2015 Express)
All code examples were written in Visual studio Basic.Net 2015 Express. This is a free of charge

version that Microsoft makes available, however, with restrictions for commercial use. This code is

laced with comment lines. These are on the one hand reminders to myself (to avoid the question,

"what/why I have done this?") and, on the other hand, to make the code accessible to other people.

The code examples in this document ca be copied into VB.Net. The colors of the code are the same

used in the development environment of Visual Studio.

In this practical part first some preliminary aspects will be worked out followed by methods to

describe zones (including source code examples). At the end you will find three full implementable

examples. The source code and the executable files can be found on site www.hzns.nl.

Coordinates
When working with pixel coordinates it may be helpful to introduce a new type of variable. Two

important characteristics are: the pixel coordinates are always integers and they are normally smaller

than 32000 (and 16 bit). The VB.NET solution looks so like this:

'Variable structure for handling pixel-coordinates
Structure Coordinate
 Dim X As Short
 Dim Y As Short
End Structure

Older versions of Visual Basic use another syntax for Structure and Short. Use instead Short and

Integer.

In addition to " ordinary " coordinates polar coordinates can be used. These have the following

structure (Arc (angle), Radius (distance), Cosinus (cosine) and Sinus(sine)):

'Variable structure for handling pixel-polar coordinates
Structure PolarCoordinate
 Dim Arc As Double
 Dim Radius As Double
 Dim Cosinus As Double
 Dim Sinus As Double
End Structure

http://www.hzns.nl/

© February 2017 J.A. Kok 9 Smart Button Project

Unlike the ordinary coordinates are "broken" values possible. At trigonometric functions is, in

calculations with 90 degree or multiples increments, The cosine or sine have very small values. The

variable type Double is recommended.

Mouse positon
The ultimate goal is to find the coordinate of the mouse click relative to the upper-right corner of the

button. For this we use the diagram as given in the theory. The button name is SmartButton.

Mouse position relative to the screen
The mouse position relative to the upper-right corner of the screen can be captured with the

function MousePosition. These are the values a (MouseOnScreenX) and p (MouseOnScreenY).

 'Mouse position on screen
 Dim ScreenMouse As Coordinate
 ScreenMouse.X = MousePosition.X
 ScreenMouse.Y = MousePosition.Y

Form position relative to the screen
The Forms X and Y coordinate ((values b (FormX) and q (FormY) in the diagram) are a properties of

the Form.

 'Form topleftcorner on screen
 Dim FormTopLeftCorner As Coordinate
 FormTopLeftCorner.X = Me.Left
 FormTopLeftCorner.Y = Me.Top

Size of the forms framework
The next step is to determine the dimensions of the framework of the form. First we define a

variable. This is the width of the Border And the height of the title Bar. (Based on the presumption

the border width is on all sides the same.)

'Variable structure for handling the bar and border size of a container
Structure FrameSize
 Dim Border As Short
 Dim Bar As Short
End Structure

I can recommend two methods. The first is a more general and the second there is one specifically

for working with forms. Both are described in the structure of a function.

For the first method we need four parameters in the function. This concerns:

- the forms outer width (on demand value as <ContainerName>.Width)

- the forms outer height (on demand value as <ContainerName>.Height)

- the forms inner width (on demand value as <ContainerName>.ClientSize.Width)

- the forms inner height (on demand value as <ContainerName>.ClientSize.Height)

 'Function calculates size of the border and titlebar for rectangular
 objects(framework)
 Function ObjectFrame(OuterWidth As Integer, OuterHeight As Integer,
 InnerWidth As Integer, InnerHeight As Integer) As FrameSize
 'Internal function variable
 Dim Result As FrameSize

 'Calculating border and bar size (=Result)
 Result.Border = (OuterWidth - InnerWidth) / 2

© February 2017 J.A. Kok 10 Smart Button Project

 Result.Bar = OuterHeight - InnerHeight - 2 * Result.Border

 'Returning function value
 Return Result
 End Function

Used in an example:

 'Variable on module level
 Dim FormFrame As Framesize

 'Forms border- and barsize are calculated by using the function ObjectFrame
 FormFrame = ObjectFrame(Me.Width, Me.Height, Me.ClientSize.width, _
 Me.ClientSize.Height)

In the second method the form itself is used as parameter:

 'Function calculates border- and barsize for forms
 Function Frame(Element As Form) As FrameSize
 'Internal function variable
 Dim Result As FrameSize

 'Calculating border and bar size (=Result)
 Result.Border = (Element.Width - Element.ClientSize.Width) / 2
 Result.Bar = Element.Height - Element.ClientSize.Height - 2 * Result.Border

 'Returning function value
 Return Result
 End Function

Used in an example:

 'Variable on module level
 Dim FormFrame As Framesize

 'Forms border- and barsize are calculated by using the function Frame
 FormFrame = Frame(Me)

Both functions return the same result, namely FormFrame.Border as the values c and r

(FormulierKADER) and FormFrame.Bar for the value s (FormulierBALK).

Position of the Button related to the workspace of the form
The buttons top left corner (values d (ButtonX) and t (ButtonY) in diagram) is a property of the button.

They are variable on demand. They are defined related to the workspace (ClientSize).

 'Position topleftcorner of button based on clientsize form
 'SmartButton is a button on the form
 Dim ButtonTopLeftCorner As Coordinate
 ButtonTopLeftCorner.X = SmartButton.Left
 ButtonTopLeftCorner.Y = SmartButton.Top

The end result
The Workout the formula from the theory looks like:

 'Position mouse on SmartButton
 Dim ButtonMouse As Coordinate
 'Calculate relative position mouse on the SmartButton
 ButtonMouse.X = ScreenMouse.X - FormTopLeftCorner.X – _
 FormFrame.Border - ButtonTopLeftCorner.X
 ButtonMouse.Y = ScreenMouse.Y - FormTopLeftCorner.Y - _
 FormFrame.Border - FormFrame.Bar - ButtonTopLeftCorner.Y

© February 2017 J.A. Kok 11 Smart Button Project

Raster zones

Simpel raster
In a simple raster layout the zones are separated by vertical and horizontal (boundaries) lines.

Vertical zone boundaries have a "fixed" X-coordinate. In code may look like this:

 'Zone left side of the border
 ButtonMouse.X < VerticalZoneBoundary
 'zone right side of the border
 ButtonMouse.X > VerticalZoneBoundary

The boundary was included in de right zone (as mention in the theory).

For the horizontal borders it is more or less the same (with a “fixed” Y coordinate):

 'Zone above the border
 ButtonMouse.Y < HorizontalZoneBorder
 'Zone below the border
 ButtonMouse.Y > HorizontalZoneBorder

The boundary was included in de Bottom zone (as mention in the theory).

In the second example you will find work out for a raster with both horizontal and vertical

boundaries.

Sloped lines or mathematical formulas as boundary
If as boundary is sloped or is described with a mathematical formula we must use the test value

(TestValue) method. As an example a simple line as boundary with the formula Y = X. When we

transform this formula (as in the theory) in the test value structure we get the following formula:

Test value = X – Y. The code example for this case is:

 'Internal variable
 Dim TestValue As Short

 'Calculating TestValue
 TestValue = MouseButton.X - MouseButton.Y

 'Determinating above, on or below the border
 If TestValue > 0 then
 MsgBox ("Above border",,)
 ElseIf TestValue = 0 then
 MsgBox ("On border",,)
 Else
 MsgBox ("Below border",,)
 EndIf

Creating circular zones
In mathematics a circle is the set of points that are at a given distance from a given point, the center.

A distance between two points (for example, the center of a circle and the place where is clicked

with the mouse) can be calculated using the Pythagorean theorem. In this part of this document we

will call the center of the circle the reference point and the distance to that reference point the

radius. The code for the calculation of the Radius could look like:

Function CreateRadius(Point As Coordinate, Referencepoint As Coordinate) As Double
 'Internal function variable
 Dim Result As Double

© February 2017 J.A. Kok 12 Smart Button Project

 'Calculating Radius (= Result)
 Result = ((Point.X - Referencepoint.X) ^ 2 + _
 (Point.Y - Referencepoint.Y) ^ 2) ^ 0.5

 'Returning function value
 Return Result
End Function

The decision logic might look like this:

 'Variable on module level
 Dim MouseClick As Coordinate
 Dim Center As Coordinate
 Dim RadiusBoundary As Short
 Dim RadiusMouse As Double

 'Calculating Radius
 RadiusMouse = CreateRadius(MouseClick, Center)

 'Determinating in-, on or outside the circle
 If RadiusMouse > RadiusBoundary Then
 MsgBox("Outside circle",,)
 ElseIf RadiusMouse = RadiusBoundary Then
 MsgBox("On circle",,)
 Else
 MsgBox("Inside circle",,)
 End If

In the first example, further on in this document is a circular zone around the center of the button

used.

Creating segment zones
Segments can be described as a pie wedges whose boundaries be determines by the angle to a

certain fixed point (reference point). By comparing the angle of the mouse click to the reference

point with the boundary angles we can determine whether the mouse click was in within or outside

the segment.

Angles can be described in different ways. This document describes two methods: one using

sine/cosine and another using degree.

Using sine and cosine
The sine and the cosine in mathematics are described using a right triangle. The sine as "opposite

side" divided by the "hypotenuse" and the cosine as "adjacent side" divided by the "hypotenuse".

In a practical implementation the "hypotenuse" can be translated as the distance between the center

of the segments (Referencepoint) and a specific point (for example, the mouse click (Mouseclick)),

the "adjacent side" the difference in X-coordinates (with sign) between the two points (MouseclickX -

ReferencepointX) and the "opposite side" the difference in Y-coordinate (with sign) between the two

points (MouseclickY - ReferencepointY). In code, the following functions can be used:

Function CreateSinus(Point As Coordinate, Referencepoint As Coordinate) As Double
 'Internal function variable variables
 Dim Result As Double
 Dim Radius As Double

 'Calculating Radius and Sinus (= result)
 Radius = ((Point.X - Referencepoint.X) ^ 2 + _
 (Point.Y - Referencepoint.Y) ^ 2) ^ 0.5

© February 2017 J.A. Kok 13 Smart Button Project

 Result = (Point.Y - Referencepoint.Y) / Radius

 'Returning function value
 Return Result
End Function

Function CreateCosinus(Point As Coordinate, Referencepoint As Coordinate) As Double
 'Internal function variable variables
 Dim Result As Double
 Dim Radius As Double

 'Calculating Radius and Cosinus (= result)
 Radius = ((Point.X - Referencepoint.X) ^ 2 + _
 (Point.Y - Referencepoint.Y) ^ 2) ^ 0.5
 Result = (Point.X - Referencepoint.X) / Radius

 'Returning function value
 Return Result
End Function

The decision logic for a circle with six equal segments might look like this:

 'Variable on module level
 Dim ButtonMouse As Coordinate 'Location of mouse click on button
 Dim Center As Coordinate 'Location of center of segments

 'Calculating Cosinus and Sinus
 Cosinus = CreateCosinus(ButtonMouse, Center)
 Sinus = CreateSinus(ButtonMouse, Center)

 'Determinating in which segment was clicked (six segments)
 Select Case Cosinus
 Case >= 0
 If Sinus < -0.5 Then
 MsgBox("top right",,)
 ElseIf Sinus >= -0.5 And Sinus < 0.5 Then
 MsgBox("middle right",,)
 ElseIf Sinus >= 0.5 Then
 MsgBox("bottom right",,)
 End If
 Case < 0
 If Sinus < -0.5 Then
 MsgBox("top left",,)
 ElseIf Sinus >= -0.5 And Sinus < 0.5 Then
 MsgBox("middle left",,)
 ElseIf Sinus >= 0.5 Then
 MsgBox("bottom left",,)
 End If
 End Select

In the first example sine and cosine are used to identify the correct zone.

Using degrees
With a given sine and cosine of an angle you can make a conversion to degrees. The VB.NET functions

generate an angle in radians. By dividing by 2 Pi and multiplying by 360thes value is converted to

degree’s: Value in Degree = Value in Radians * 360 / 2 Pi (is same as Value in Radians * 180 / Pi used in de

functions).

© February 2017 J.A. Kok 14 Smart Button Project

Using a given sine and cosine of an angle we can determine the angle in degrees. The VB.Net features

for sine and cosine make an angle in radians. This value divided by 2 Pi and multiplying by 360 is this

corner converted to degrees (2Pi/360 = Pi/180).

Function CreateDegree(Point As Coordinate, Referencepoint As Coordinate) As Double
 'Internal function variable variables
 Dim Result As Double
 Dim Radius As Double
 Dim Sinus As Double
 Dim Cosinus As Double
 Dim TempArc As Double

 'Calculating Radius, Sinus and Cosinus
 Radius = ((Point.X - Referencepoint.X) ^ 2 + _
 (Point.Y - Referencepoint.Y) ^ 2) ^ 0.5
 Sinus = (Point.Y - Referencepoint.Y) / Radius
 Cosinus = (Point.X - Referencepoint.X) / Radius

 'Calculating TempArc in degrees
 TempArc = Math.Acos (Cosinus) * (180 / Math.PI)

 'Determinating the real arc (=Result) based on Sinus and Cosinus in degree
 If Cosinus >= 0 And Sinus < 0 Then
 Result = 90 - TempArc
 EleseIf Cosinus >= 0 And Sinus >= 0 Then
 Result = 90 + TempArc
 EleseIf Cosinus < 0 And Sinus >= 0 Then
 Result = 90 + TempArc
 EleseIf Cosinus < 0 And Sinus < 0 Then
 Result = 450 - TempArc
 End If

 'Returning function value
 Return Result

End Function

The decision logic for a circle with six equal segments might look like this:

 'Variable on module level
 Dim ButtonMouse As Coordinate 'Location of mouse click on button
 Dim Center As Coordinate 'Location of center of segments

 'Calculating Cosinus and Sinus
 Degree = CreateDegree(ButtonMouse, Center)

 'Determinating in which segment was clicked (six segments)
 If Degree >= 0 And Degree < 60 Then
 MsgBox("top right",,)
 ElseIf Degree >= 60 And Degree < 120 Then
 MsgBox("middle right",,)
 ElseIf Degree >= 120 And Degree < 180 Then
 MsgBox("bottom right",,)
 ElseIf Degree >= 180 And Degree < 240 Then
 MsgBox("bottom left",,)
 ElseIf Degree >= 240 And Degree < 300 Then
 MsgBox("middle left",,)
 ElseIf Degree >= 300 And Degree < 360 Then
 MsgBox("top left",,)
 End If

In the third example degrees ar used to identify the correct zone.

© February 2017 J.A. Kok 15 Smart Button Project

Considerations when using sine, cosine and degrees
When using the trigonometric functions sine and cosine be ware they are based on a Cartesian

coordinate system: X increases from left to right, Y increases from bottom to top and angles anti-

clockwise. The coordinate system we use on our screen is different: X increases from left to right too,

but Y increases from top to bottom and angles clockwise. When creating the decision logic, we must

take differences into account.

A second point of focus is order of the terms in determining the differences. The first term is the

specific point and the second the reference point. In this way the sign of the difference in X and the

difference in Y correspond to the sign of the coordinate system. Turning the order affects the

decision logic.

Polar coordinate
In the theory is already indicated that a point can also be described using a polar coordinate,

describing a point by giving the distance and direction (angle) relative to another point. In the

function CreatePolarCoord is generating a variable with all the features of a polar coordinate.

Actually it's a combination of the preceding four functions (CreateRadius, CreateSinus,

CreateCosinus, CreateDegree).

Function CreatePolarCoord(Point As Coordinate, Referencepoint As Coordinate) _
 As PolarCoordinate
 'Internal function variable variables
 Dim TempArc As Double
 Dim Result As PolarCoordinate

 'Calculating Radius, Cosinus, Sinus and Arc
 Result.Radius = ((Point.X - Referencepoint.X) ^ 2 + _
 (Point.Y - Centerpoint.Y) ^ 2) ^ 0.5
 Result.Cosinus = (Point.X - Referencepoint.X) / Result.Radius
 Result.Sinus = (Point.Y - Referencepoint.Y) / Result.Radius

 'Calculating TempArc in degrees
 TempArc = Math.Acos(Result.Cosinus) * (180 / Math.PI)

 'Determining the real arc (=Result.Arc) based on Sinus and Cosinus in degree
 If Result.Cosinus >= 0 And Result.Sinus < 0 Then
 Result.Arc = 90 - TempArc
 ElseIf Result.Cosinus >= 0 And Result.Sinus >= 0 Then
 Result.Arc = 90 + TempArc
 ElseIf Result.Cosinus < 0 And Result.Sinus >= 0 Then
 Result.Arc = 90 + TempArc
 ElseIf Result.Cosinus < 0 And Result.Sinus < 0 Then
 Result.Arc = 450 - TempArc
 End If

 'Returning function value
 Return Result

© February 2017 J.A. Kok 16 Smart Button Project

Examples
This document includes three examples. You will find them in the sample application "Smart Button

Project" (SBP.exe). Most of the functionality discussed in this document returms in these examples.

Smartbutton01 (left) is the first example. It was used for developing and describing the functionality.

Smartbutton02 (upper right) is an example of using raster zones. Smartbutton03 (bottom right)

shows you four different (related) functionalities an a 62 by 62 pixels size button.

The project uses a single form (SPBmain. vb (VB code, annex 1). The VB.Net code consists of 6

sections, namely "Structures for module-level variables and variables", "Functions", "Activities when

loading the form" and the functionality for SmartButton01 to SmartButton03. On the image above

you see all kinds of data is displayed. These are related to the variables that are used within the

different subroutines.

Part 1: Structures for module-level variables and variables
In part 1 will find the variable structures for coordinates, polar coordinates and the framework of a

form. In addition, they included two variables used at the module level for SmartButton02 and

SmartButton03.

Part 2: Functions
On this spot you will find all the functions described in this document.

Part 3: Activities when loading the form
When the form is opened the text of SmartButton01 and SmartButton02 are loaded. Also a copy is

maded of the "arrow" image used by SmartButton03.

Part 4: Example Smartbutton01
This first example was my first finger exercise of this project. The goal was

to achieve a button with 5 zones, namely a circular zone in the middle

surrounded by 4 zones which are separated by the diagonals. (see theory

combinations). The button is for testing purposes over dimensioned. The

first steps of the SmartButton01_Click subroutine the location of the

mouse click on the button is established. Then the sine, cosine and the

distance to the upper left corner (Checkpoint/Check Vector) and the

© February 2017 J.A. Kok 17 Smart Button Project

mouse click is determined by the function CreatePolarCoord. Then Both angles are used for

determining the appropriate zone by comparability. The actual action linked to the mouse click is

showing the zone where was clicked.

Part 5: Example Smartbutton02
The second example is a "simulation" of a phone keypad. The button is divides

into a raster with twelve zones (layout three zones width, four zones height). Also

in this example, the first steps the location of the mouse click on the button is

established. Next, the X and Y of the mouse click compared with the boundaries

between the zones. The actual action linked to the mouse click is added the

clicked character to the test window “Code” below the button. The zones CL and

Bs offer the possibility to delete all characters (CL = Clear) or only the last

character (Bs = Backspace).

Part 6: Example Smartbutton03
The third example is real prototype for a button I use in another application. The

square button consists of 4 zones, separated by the diagonals. (Coherent)

functionalities to rotate an image are linked to the zones. (Clockwise from top:

Image Restore, 90 degrees to Rotate clockwise, rotate 180 degrees and 90

degrees counter-clockwise rotate). In this prototype you will see the effect of clicking on one of the

zones; the arrow turns. Once again are the first steps in this subroutine are aimed to locate the

mouse click. Then, using the function CreatePolarCoord the angle is established. This angle

determine the clicked zone.

For your information: the images Button.bmp and URArrow.bmp wer placed in the "My Project"

folder. In the project they were imported into "Project Resource file" and from there linked to the

correct PictureBox or Button.

Experiences
 A 30 by 30 pixels zone delivers a usable situation, both for the use of a mouse as for the use of a

stick on a touchscreen.

 Test the functionality of all zones, as soon as possible. If necessary with the VB.Net messages-

functionality (MsgBox). In this way, you can convince yourselves of the accuracy of the decision

logic.

 When building decision logic take in account the differences between the screen coordinate

system and the Cartesian system (see “Considerations when using sine, cosine and degrees”)

© February 2017 J.A. Kok 18 Smart Button Project

Annex 1: VB Code of SBPmain.

Public Class SBPmain

 'Part 1: Variable structures and variables on module level

 'Variable structure for handling pixel-coordinates
 Structure Coordinate
 Dim X As Short
 Dim Y As Short
 End Structure

 'Variable structure for handling pixel-polar coordinates
 Structure PolarCoordinate
 Dim Arc As Double
 Dim Radius As Double
 Dim Cosinus As Double
 Dim Sinus As Double
 End Structure

 'Variable structure for handling the bar and border size of a container
 Structure FrameSize
 Dim Border As Short
 Dim Bar As Short
 End Structure

 'Variable used by SmartButton02
 Dim SmartText As String

 'Variable (object) used by SmartButton03
 Dim BaseImage As Image

 'Part 2: Functions

 'Function calculates size of the border and titlebar for rectangular objects (framework)
 Function ObjectFrame(OuterWidth As Integer, OuterHeight As Integer,
 InnerWidth As Integer, InnerHeight As Integer) As FrameSize
 'Internal function variable
 Dim Result As FrameSize

 'Calculating border and Bar size (=Result)
 Result.Border = (OuterWidth - InnerWidth) / 2
 Result.Bar = OuterHeight - InnerHeight - 2 * Result.Border

 'Returning function value
 Return Result

 End Function

 'Function calculates border- and barsize for forms
 Function Frame(Element As Form) As FrameSize
 'Internal function variable
 Dim Result As FrameSize

 'Calculating border and Bar size (=Result)
 Result.Border = (Element.Width - Element.ClientSize.Width) / 2
 Result.Bar = Element.Height - Element.ClientSize.Height - 2 * Result.Border

 'Returning function value
 Return Result

 End Function

 'Function calculates the distance (Radius) between two points
 Function CreateRadius(Point As Coordinate, Referencepoint As Coordinate) As Double
 'Internal function variable variables
 Dim Result As Double

 'Calculating Radius (= Result)
 Result = ((Point.X - Referencepoint.X) ^ 2 + (Point.Y - Referencepoint.Y) ^ 2) ^ 0.5

 'Returning function value
 Return Result

© February 2017 J.A. Kok 19 Smart Button Project

 End Function

 'Function calculates the sinus between two points
 Function CreateSinus(Point As Coordinate, Referencepoint As Coordinate) As Double
 'Internal function variables
 Dim Result As Double
 Dim Radius As Double

 'Calculating Radius and Sinus (= Result)
 Radius = ((Point.X - Referencepoint.X) ^ 2 + (Point.Y - Referencepoint.Y) ^ 2) ^ 0.5
 Result = (Point.Y - Referencepoint.Y) / Radius

 'Returning function value
 Return Result

 End Function

 'Function calculates the cosinus between two points
 Function CreateCosinus(Point As Coordinate, Referencepoint As Coordinate) As Double
 'Internal function variables
 Dim Result As Double
 Dim Radius As Double

 'Calculating Radius and Cosinus (= Result)
 Radius = ((Point.X - Referencepoint.X) ^ 2 + (Point.Y - Referencepoint.Y) ^ 2) ^ 0.5
 Result = (Point.X - Referencepoint.X) / Radius

 'Returning function value
 Return Result

 End Function

 'Function calculates the arc in degrees between two points
 Function CreateDegree(Point As Coordinate, Referencepoint As Coordinate) As Double
 'Internal function variables
 Dim Result As Double
 Dim Radius As Double
 Dim Sinus As Double
 Dim Cosinus As Double
 Dim TempArc As Double

 'Calculating Radius, Sinus and Cosinus
 Radius = ((Point.X - Referencepoint.X) ^ 2 + (Point.Y - Referencepoint.Y) ^ 2) ^ 0.5
 Sinus = (Point.Y - Referencepoint.Y) / Radius
 Cosinus = (Point.X - Referencepoint.X) / Radius

 'Calculating TempArc in degree
 TempArc = Math.Acos(Cosinus) * (180 / Math.PI)

 'Determining the real arc (=Result) based on Sinus and Cosinus in degree
 If Cosinus >= 0 And Sinus < 0 Then
 Result = 90 - TempArc
 ElseIf Cosinus >= 0 And Sinus >= 0 Then
 Result = 90 + TempArc
 ElseIf Cosinus < 0 And Sinus >= 0 Then
 Result = 90 + TempArc
 ElseIf Cosinus < 0 And Sinus < 0 Then
 Result = 450 - TempArc
 End If

 'Returning function value
 Return Result

 End Function

 'Function calculates polar coordinate between two points
 Function CreatePolarCoord(Point As Coordinate, Referencepoint As Coordinate) As PolarCoordinate
 'Internal function variable variables
 Dim TempArc As Double
 Dim Result As PolarCoordinate

 'Calculating Radius, Cosinus, Sinus and Arc
 Result.Radius = ((Point.X - Referencepoint.X) ^ 2 + (Point.Y - Referencepoint.Y) ^ 2) ^ 0.5

© February 2017 J.A. Kok 20 Smart Button Project

 Result.Cosinus = (Point.X - Referencepoint.X) / Result.Radius
 Result.Sinus = (Point.Y - Referencepoint.Y) / Result.Radius

 'Calculating TempArc in degrees
 TempArc = Math.Acos(Result.Cosinus) * (180 / Math.PI)

 'Determining the real arc (=Result.Arc) based on Sinus and Cosinus in degree
 If Result.Cosinus >= 0 And Result.Sinus < 0 Then
 Result.Arc = 90 - TempArc
 ElseIf Result.Cosinus >= 0 And Result.Sinus >= 0 Then
 Result.Arc = 90 + TempArc
 ElseIf Result.Cosinus < 0 And Result.Sinus >= 0 Then
 Result.Arc = 90 + TempArc
 ElseIf Result.Cosinus < 0 And Result.Sinus < 0 Then
 Result.Arc = 450 - TempArc
 End If

 'Returning function value
 Return Result

 End Function

 'Part 3: Form loading activities

 Private Sub SBPmain_Load(sender As Object, e As EventArgs) Handles MyBase.Load
 'On load the text or image for the buttons is created (Text is horizontal an vertical centered
)
 'Subroutine internal variables
 Dim ButtonText As String
 Dim EndOfLine As String = Chr(13) & Chr(10)

 'Creating the text for SmartButton01
 ButtonText = "Top" & EndOfLine & EndOfLine & EndOfLine & EndOfLine &
 "Left Center Right" &
 EndOfLine & EndOfLine & EndOfLine & EndOfLine & "Bottom"
 SmartButton01.Text = ButtonText

 'Creating the text for SmartButton02
 ButtonText = "1 2 3" & EndOfLine & EndOfLine &
 "4 5 6" & EndOfLine & EndOfLine &
 "7 8 9" & EndOfLine & EndOfLine &
 "Cl 0 Bs"
 SmartButton02.Text = ButtonText

 'Image used for SmartButton03
 'Saving a copy of the original picture
 BaseImage = Button03PictureBox.Image.Clone

 End Sub

 'Part 4: Handling clicks on SmartButton01
 Private Sub SmartButton01_Click(sender As Object, e As EventArgs) Handles SmartButton01.Click

 'determination position of mouse click

 'Mouse position on screen
 Dim ScreenMouse As Coordinate
 ScreenMouse.X = MousePosition.X
 ScreenMouse.Y = MousePosition.Y

 'Form topleftcorner on screen
 Dim FormTopLeftCorner As Coordinate
 FormTopLeftCorner.X = Me.Left
 FormTopLeftCorner.Y = Me.Top

 'Forms border- and barsize are calculated by using the function Frame
 Dim FormFrame As FrameSize
 FormFrame = Frame(Me)

 'Position topleftcorner of button based on clientsize form
 Dim ButtonTopLeftCorner As Coordinate
 ButtonTopLeftCorner.X = SmartButton01.Left
 ButtonTopLeftCorner.Y = SmartButton01.Top

© February 2017 J.A. Kok 21 Smart Button Project

 'Position mouse on SmartButton
 Dim ButtonMouse As Coordinate
 'Calculate relative position mouse on the SmartButton
 ButtonMouse.X = ScreenMouse.X - FormTopLeftCorner.X - FormFrame.Border - ButtonTopLeftCorner.X
 ButtonMouse.Y = ScreenMouse.Y - FormTopLeftCorner.Y - FormFrame.Border - FormFrame.Bar -
ButtonTopLeftCorner.Y

 'Data to labels on form
 XposMouse01Value.Text = ButtonMouse.X
 YposMouse01Value.Text = ButtonMouse.Y

 'Calculating center of SmartButton01
 Dim Center As Coordinate
 Center.X = SmartButton01.Width / 2
 Center.Y = SmartButton01.Height / 2

 'Data to labels on form
 XposCenterValue.Text = Center.X
 YposCenterValue.Text = Center.Y

 'To discriminate Top/Bottom/Left/Right of the mouseposition the mouse sinus and cosinus
 'will be compared with the sinus and cosinus of the topleftcormer of the button
(CheckPoint/CheckVector)

 'Setting CheckPoint data
 Dim CheckPoint As Coordinate
 Dim CheckVector As PolarCoordinate
 CheckPoint.X = 0
 CheckPoint.Y = 0
 'Calculating data for CheckVector
 CheckVector = CreatePolarCoord(CheckPoint, Center)

 'Data to labels on form
 XposCheckValue.Text = CheckPoint.X
 YposCheckValue.Text = CheckPoint.Y
 RadiusCheckVectorValue.Text = CheckVector.Radius
 CosinusCheckVectorValue.Text = CheckVector.Cosinus
 SinusCheckVectorValue.Text = CheckVector.Sinus
 ArcCheckVectorValue.Text = CheckVector.Arc

 'Calculate PolarCoordinate MouseVector
 Dim MouseVector As PolarCoordinate
 MouseVector = CreatePolarCoord(ButtonMouse, Center)

 'Data to the labels on the form
 RadiusMouseVector01Value.Text = MouseVector.Radius
 CosinusMouseVector01Value.Text = MouseVector.Cosinus
 SinusMouseVector01Value.Text = MouseVector.Sinus
 ArcMouseVector01Value.Text = MouseVector.Arc

 'Creating 5 zones and adding functionality to those zones

 'If Mouse position within a radius of 20% of the CheckVector > Center
 If MouseVector.Radius < CheckVector.Radius / 5 Then
 Button01ResultValue.Text = "Center"

 'Comparing sinus and cosinus values for determination Top/Bottom/Left/Right

 ElseIf MouseVector.Sinus < CheckVector.Sinus Then
 Button01ResultValue.Text = "Top"

 ElseIf MouseVector.Sinus > -CheckVector.Sinus Then
 Button01ResultValue.Text = "Bottom"

 ElseIf MouseVector.Cosinus < -CheckVector.Cosinus Then
 Button01ResultValue.Text = "Left"

 ElseIf MouseVector.Cosinus > CheckVector.Cosinus Then
 Button01ResultValue.Text = "Right"

 Else
 'For the most incredible cases (if cases above don't fit)
 Button01ResultValue.Text = "Nothing"

© February 2017 J.A. Kok 22 Smart Button Project

 End If

 End Sub

 'Part 5: Handling clicks on SmartButton02
 Private Sub SmartButton02_Click(sender As Object, e As EventArgs) Handles SmartButton02.Click

 'Determination position of mouse click

 'Mouse position on screen
 Dim ScreenMouse As Coordinate
 ScreenMouse.X = MousePosition.X
 ScreenMouse.Y = MousePosition.Y

 'Form topleftcorner on screen
 Dim FormTopLeftCorner As Coordinate
 FormTopLeftCorner.X = Me.Left
 FormTopLeftCorner.Y = Me.Top

 'Forms border- and barsize are calculated by using the function Frame
 Dim FormFrame As FrameSize
 FormFrame = Frame(Me)

 'Position topleftcorner of button based on clientsize form
 Dim ButtonTopLeftCorner As Coordinate
 ButtonTopLeftCorner.X = SmartButton02.Left
 ButtonTopLeftCorner.Y = SmartButton02.Top

 'Position mouse on SmartButton
 Dim ButtonMouse As Coordinate
 'Calculate relative position mouse on the SmartButton
 ButtonMouse.X = ScreenMouse.X - FormTopLeftCorner.X - FormFrame.Border - ButtonTopLeftCorner.X
 ButtonMouse.Y = ScreenMouse.Y - FormTopLeftCorner.Y - FormFrame.Border - FormFrame.Bar -
ButtonTopLeftCorner.Y

 'Data to labels on form
 XposMouse02Value.Text = ButtonMouse.X
 YposMouse02Value.Text = ButtonMouse.Y

 'Adding functionality to zones on SmartButton02 (adding characters to SmartText)

 'Vertical borders at (X=) 40 and 80
 'Horizontal borders a (Y=) 30, 60 and 90
 Select Case ButtonMouse.X
 Case 0 To 39
 Select Case ButtonMouse.Y
 Case 0 To 29
 SmartText = SmartText + "1"
 Case 30 To 59
 SmartText = SmartText + "4"
 Case 60 To 89
 SmartText = SmartText + "7"
 Case 90 To 119
 'Deleting all text
 SmartText = ""
 End Select
 Case 40 To 79
 Select Case ButtonMouse.Y
 Case 0 To 29
 SmartText = SmartText + "2"
 Case 30 To 59
 SmartText = SmartText + "5"
 Case 60 To 89
 SmartText = SmartText + "8"
 Case 90 To 119
 SmartText = SmartText + "0"
 End Select
 Case 80 To 119
 Select Case ButtonMouse.Y
 Case 0 To 29
 SmartText = SmartText + "3"
 Case 30 To 59
 SmartText = SmartText + "6"
 Case 60 To 89

© February 2017 J.A. Kok 23 Smart Button Project

 SmartText = SmartText + "9"
 Case 90 To 119
 'Deleting last characters (only if Smart <> "")
 If SmartText <> "" Then
 SmartText = Mid(SmartText, 1, Len(SmartText) - 1)
 End If
 End Select
 End Select

 'Smarttect to label on form
 Button02ResultValue.Text = SmartText
 End Sub

 'Part 6: Handling clicks on SmartButton03

 Private Sub SmartButton03_Click(sender As Object, e As EventArgs) Handles SmartButton03.Click
 'Subroutine internal variable
 Dim TempImage As Bitmap

 'Determinating positioon of mouse click

 'Mouse position on screen
 Dim ScreenMouse As Coordinate
 ScreenMouse.X = MousePosition.X
 ScreenMouse.Y = MousePosition.Y

 'Form topleftcorner on screen
 Dim FormTopLeftCorner As Coordinate
 FormTopLeftCorner.X = Me.Left
 FormTopLeftCorner.Y = Me.Top

 'Forms border- and barsize are calculated by using the function Frame
 Dim FormFrame As FrameSize
 FormFrame = Frame(Me)

 'Position topleftcorner of button based on clientsize form
 Dim ButtonTopLeftCorner As Coordinate
 ButtonTopLeftCorner.X = SmartButton03.Left
 ButtonTopLeftCorner.Y = SmartButton03.Top

 'Position mouse on SmartButton
 Dim ButtonMouse As Coordinate
 'Calculate relative position mouse on the SmartButton
 ButtonMouse.X = ScreenMouse.X - FormTopLeftCorner.X - FormFrame.Border - ButtonTopLeftCorner.X
 ButtonMouse.Y = ScreenMouse.Y - FormTopLeftCorner.Y - FormFrame.Border - FormFrame.Bar -
ButtonTopLeftCorner.Y

 'Data to labels on form
 XposMouse03Value.Text = ButtonMouse.X
 YposMouse03Value.Text = ButtonMouse.Y

 'Calculating center of SmartButton03
 Dim Center As Coordinate
 Center.X = SmartButton03.Width / 2
 Center.Y = SmartButton03.Height / 2

 'To discreminate Top/Bottom/Left/Right of the mouseposition the mouse Arc will be used

 'Calculate PolarCoordinate MouseVector
 Dim MouseVector As PolarCoordinate
 MouseVector = CreatePolarCoord(ButtonMouse, Center)

 'Data to the label on the form
 ArcMouseVector03Value.Text = MouseVector.Arc

 'Discriminating 4 zones of 90 degree
 If MouseVector.Arc >= 315 Or MouseVector.Arc < 45 Then 'Top zone
 'Data to label on form
 Button03ResultValue.Text = "Top, Reset image"
 'Loading the original picture
 Button03PictureBox.Image = BaseImage.Clone

 ElseIf MouseVector.Arc >= 45 And MouseVector.Arc < 135 Then 'Right zone
 'Data to label on form

© February 2017 J.A. Kok 24 Smart Button Project

 Button03ResultValue.Text = "Right, Turn image 90 degree clockwise"
 'Turning image 90 degree
 TempImage = CType(Button03PictureBox.Image, Bitmap)
 TempImage.RotateFlip(RotateFlipType.Rotate90FlipNone)
 Button03PictureBox.Image = TempImage

 ElseIf MouseVector.Arc >= 135 And MouseVector.Arc < 225 Then 'Bottom zone
 'Data to label on form
 Button03ResultValue.Text = "Bottom, Turn image 180 degree"
 'Turning image 180 degree
 TempImage = CType(Button03PictureBox.Image, Bitmap)
 TempImage.RotateFlip(RotateFlipType.Rotate180FlipNone)
 Button03PictureBox.Image = TempImage

 ElseIf MouseVector.Arc >= 225 And MouseVector.Arc < 315 Then 'Left zone
 'Data to label on form
 Button03ResultValue.Text = "Left, Turn image 90 degree anti-clockwise"
 'Turning image 270 degree (= -90 degree)
 TempImage = CType(Button03PictureBox.Image, Bitmap)
 TempImage.RotateFlip(RotateFlipType.Rotate270FlipNone)
 Button03PictureBox.Image = TempImage

 End If

 End Sub

End Class

